Novel asymmetric representation method for solving the higher-order Ginzburg-Landau equation.
نویسندگان
چکیده
In ultrafast optics, optical pulses are generated to be of shorter pulse duration, which has enormous significance to industrial applications and scientific research. The ultrashort pulse evolution in fiber lasers can be described by the higher-order Ginzburg-Landau (GL) equation. However, analytic soliton solutions for this equation have not been obtained by use of existing methods. In this paper, a novel method is proposed to deal with this equation. The analytic soliton solution is obtained for the first time, and is proved to be stable against amplitude perturbations. Through the split-step Fourier method, the bright soliton solution is studied numerically. The analytic results here may extend the integrable methods, and could be used to study soliton dynamics for some equations in other disciplines. It may also provide the other way to obtain two-soliton solutions for higher-order GL equations.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملStabilization by slow diffusion in a real Ginzburg-Landau system
The Ginzburg-Landau equation is essential for understanding the dynamics of patterns in a wide variety of physical contexts. It governs the evolution of small amplitude instabilities near criticality. It is well known that the (cubic) Ginzburg-Landau equation has various unstable solitary pulse solutions. However, such localized patterns have been observed in systems in which there are two comp...
متن کاملComparison of complete scaling and a field-theoretic treatment of asymmetric fluid criticality.
We investigate the connection between the theory of complete scaling and a field-theoretic (FT) treatment of asymmetric fluid criticality. To facilitate the comparison, we develop an equation of state from a simplified form of the complete scaling transformations and systematically compare this equation of state with the equation of state generated by a FT treatment of an asymmetric Landau-Ginz...
متن کاملVariational Problems on Multiply Connected Thin Strips Iii: Integration of the Ginzburg-landau Equations over Graphs
We analyze the one-dimensional Ginzburg-Landau functional of superconductivity on a planar graph. In the Euler-Lagrange equations, the equation for the phase can be integrated, provided that the order parameter does not vanish at the vertices; in this case, the minimization of the GinzburgLandau functional is equivalent to the minimization of another functional, whose unknowns are a real-valued...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Scientific reports
دوره 6 شماره
صفحات -
تاریخ انتشار 2016